Mutations in the MORC2 gene cause axonal Charcot–Marie–Tooth disease

Teresa Sevilla,1,2,3,* Vincenzo Lupo,2,4,* Dolores Martínez-Rubio,2,4 Paula Sancho,2,4 Rafael Sivera,1 María J. Chumillas,2,5 Mar García-Romero,6 Samuel I. Pascual-Pascual,6 Nuria Muelas,1,2 Joaquín Dopazo,2,7 Juan J. Vílchez,1,2,3 Francesc Palau,2,4,8,§ and Carmen Espinós,2,4,§

/C3,§These authors contributed equally to this work.

Charcot–Marie–Tooth disease (CMT) is a complex disorder with wide genetic heterogeneity. Here we present a new axonal Charcot–Marie–Tooth disease form, associated with the gene microrchidia family CW-type zinc finger 2 (MORC2). Whole-exome sequencing in a family with autosomal dominant segregation identified the novel MORC2 p.R190W change in four patients. Further mutational screening in our axonal Charcot–Marie–Tooth disease clinical series detected two additional sporadic cases, one patient who also carried the same MORC2 p.R190W mutation and another patient that harboured a MORC2 p.S25L mutation. Genetic and in silico studies strongly supported the pathogenicity of these sequence variants. The phenotype was variable and included patients with congenital or infantile onset, as well as others whose symptoms started in the second decade. The patients with early onset developed a spinal muscular atrophy-like picture, whereas in the later onset cases, the initial symptoms were cramps, distal weakness and sensory impairment. Weakness and atrophy progressed in a random and asymmetric fashion and involved limb girdle muscles, leading to a severe incapacity in adulthood. Sensory loss was always prominent and proportional to disease severity. Electrophysiological studies were consistent with an asymmetric axonal motor and sensory neuropathy, while fasciculations and myokymia were recorded rather frequently by needle electromyography. Sural nerve biopsy revealed pronounced multifocal depletion of myelinated fibres with some regenerative clusters and occasional small onion bulbs. Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Different roles in biological processes have been described for MORC2. As the silencing of Charcot–Marie–Tooth disease genes have been associated with DNA damage response, it is tempting to speculate that a deregulation of this pathway may be linked to the axonal degeneration observed in MORC2 neuropathy, thus adding a new pathogenic mechanism to the long list of causes of Charcot–Marie–Tooth disease.
Introduction

The list of genes associated with Charcot–Marie–Tooth disease (CMT) and related-neuropathies is continually growing. More than 60 genes have been described (Neuromuscular Disease Center; http://neuromuscular.wustl.edu/time/hmsn.html), and about half of these CMT-associated genes were discovered after 2009 (Rossor et al., 2013) due to the development of whole-exome sequencing using next generation sequencing. While more than 90% of patients with demyelinating CMT achieve an accurate molecular diagnosis, between 25–43% of axonal patients remain without a genetic diagnosis, even in the most recent clinical series (Saporta et al., 2011; Murphy et al., 2012; Sivera et al., 2013; Fridman et al., 2015). The identification of new genes involved in axonal CMT or CMT type 2 (CMT2) is critical to improve genetic diagnosis and also to gain insight into the pathophysiology of the disease.

CMT genes encode proteins that have a wide variety of roles, such as myelin structural proteins [PMP22, Cx32 (encoded by GJB1, MPZ), mitochondrial proteins (GDAP1, MFN2), enzymes involved in cellular trafficking [SBF1, MTMR13 (encoded by SBF2), MTMR2], aminoacyl tRNA synthetases (GARS, YARS, HARS, MARS, AARS), and others (Jerath and Shy, 2015). Shared cellular pathways can account for the convergence of different genes in similar phenotypes; likewise one gene may undertake distinct functions and its impairment can render divergent clinical pictures. The complexity of CMT can also be transferred to the clinical scenario, where the list of phenotypes is continuously growing and deep expertise is frequently required to handle diagnoses (Baets et al., 2014; Harel and Lupski, 2014).

Using whole-exome sequencing we have identified mutations in the MORC2 gene in CMT2 patients who presented either with generalized weakness in infancy, reminiscent of spinal muscular atrophy, or with an adult-onset asymmetric distal and proximal weakness with important sensory loss. This report adds a new piece to the puzzle of the genetics of CMT and contributes to a better understanding of the disease mechanisms.

Materials and methods

Patients

We investigated a CMT2 family (fCMT-237), belonging to our clinical series (Sivera et al., 2013). Family fCMT-237 is a four-generation family with seven affected individuals with an autosomal dominant pattern of inheritance (Fig. 1A). In this family, mutations in CMT2 genes were previously ruled out (Sivera et al., 2013). Further mutational screening of the MORC2 gene in CMT2 families detected two additional affected individuals from Families fCMT-197 and fCMT-438 (Fig. 1A). In Family fCMT-197, also belonging to our clinical series, mutations in CMT2 genes were ruled out (Sivera et al., 2013). In Family fCMT-438, mutations in GDAP1, MFN2, GJB1, MPZ and IGHMBP2 genes, and the common SMN1 deletion, were not detected. Clinical records were reviewed, and a new detailed neurological examination was carried out on affected and unaffected subjects. Nerve conduction studies were performed in seven affected and two unaffacted individuals (Patients I:2 and III:2) from Family fCMT-237. Needle EMG studies were available in five patients (Patients II:3, III:1 and IV:3 from Family fCMT-237; Patient fCMT-197/II:4; and Patient fCMT-438/III:3). The electrophysiological studies were performed following a protocol described previously (Sevilla et al., 2003). CMTNS2 (Charcot-Marie-Tooth neuropathy examination score 2) or CMTES2 (Charcot-Marie-Tooth examination score 2) was recorded in the last evaluation (Murphy et al., 2011). Mean follow-up was 21 years. Sural nerve biopsy from two patients (Patients fCMT-237/III:1 and fCMT-197/II:4) was analysed using light and electron microscopy, as previously reported (Sevilla et al., 2003). Muscular MRI was performed following a previously reported protocol (Sivera et al., 2013).

Standard protocol approvals, registrations and patient consent

All patients and relatives included in the present study signed informed consent, and the research protocols were approved by the respective institutional board of the Ethics Committees of the corresponding Hospitals.

Genetic studies

Whole-exome sequencing was performed for DNA from four patients (Patients II:3, III:1, III:4 and IV:3; Fig. 1A) belonging
Samples were subjected to exome enrichment with the Agilent SureSelect Human All Exon 50 Mb Kit followed by sequencing using the Illumina HiSeq 2000 Genome Analyzer platform at CNAG (Centro de Análisis Genómico, Barcelona, Spain). The data analysis was performed using the BIER platform pipeline (CIBERER) (Tort et al., 2013). Then, we selected all heterozygous nucleotide changes shared among all four affected individuals. To filter out common single nucleotide polymorphisms (SNPs) and indels with allele frequency cut-offs at 0.01%, we used following database: dbSNP (http://www.ncbi.nlm.nih.gov/SNP), ESP6500 (http://evs.gs.washington.edu/EVS), ExAC (http://exac.broadinstitute.org/), and CSVS (http://csvs.babelomics.org/). Finally, novel changes were first selected as candidate variants, and further validated by Sanger sequencing on a 96-capillary Applied Biosystems 3730xl DNA Analyzer.

The variants with uncertain significance were further investigated by segregation analysis in the seven available DNAs from Family fCMT-237 (Fig. 1A). The Clustal Omega software (http://www.ebi.ac.uk/Tools/msa/clustalo/) was used to investigate the conservation of the candidate changes. The biological relevance of the novel amino acid changes was studied using both SIFT (http://blocks.fhcrc.org/sift/SIFT.html) and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/index.shtml) programs.

A search for mutations using Sanger sequencing of the codified regions of the MORC2 gene was performed in 52 unrelated CMT2 families with no genetic diagnosis. All primers...
and PCR conditions are available upon request. For Family fCMT-438, SMN1 genetic testing for the common SMN1 deletion was performed as described previously (van der Steege et al., 1995), and gene dosage analysis was investigated with multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA P021 (version A2) (MRC-Holland, Amsterdam, The Netherlands).

Gene expression

Total RNA from several adult mice tissues was isolated using TriPure isolation reagent (Roche Applied Science). A 400 bp cDNA fragment of Morc2 between exon 20–21 was amplified by reverse transcriptase-polymerase chain reaction (RT-PCR). Sciatic nerve protein extract was obtained from mice using a polytron homogenizer and lysis buffer (50 mM Tris-HCl pH 7.4, 5 mM DTT, 150 mM NaCl, 1% NP-40, 0.5% deoxycholate). To evaluate histological expression of Morc2 in peripheral nerves, mice sciatic nerves were dissected and post-fixed by immersion in 4% paraformaldehyde. Fifteen-micrometre cross-sections were immunostained and mounted in DAPI Fluoromount-G® (Southern Biotech). Images were visualized using a Leica TCS SP2 confocal system.

A rabbit polyclonal α-MORC2 antibody (Santa Cruz Biotechnology; used at 1:500) was used to perform both immunoblotting and immunofluorescence studies. In addition, a second rabbit polyclonal α-MORC2 antibody (Bioss Inc.; used at 1:500) was used to validate the immunofluorescence results. A rat monoclonal myelin basic protein (MBP) antibody (Abcam; used at 1:500) was used as a compact myelin marker. To detect α-MORC2 and α-MBP, Alexa Fluor® 448-conjugated goat anti-rabbit IgG and Alexa Fluor® 647-conjugated goat anti-rat IgG antibodies (Thermo Fisher Scientific; both at 1:500) were used, respectively.

Results

Clinical picture

The clinical characteristics are summarized in Table 1. Patients belonging to Family fCMT-237 experienced their first symptom in childhood or early adulthood, while Family fCMT-197’s proband reported a delay in the acquisition of motor milestones. The most frequent initial symptom was cramps in the lower limbs, and all affected individuals showed distal lower limb weakness and sensory loss during the initial examination. Hand weakness appeared after distal lower limbs paresis in most patients.

Proximal involvement was very frequent in the later stages of the disease, including neck flexion weakness in four patients (Table 1). At the time of the last examination, the older patients presented prominent asymmetric pelvic and shoulder girdle muscle weakness with relative sparing of knee and elbow extension (score of 3 or 4 on the Medical Research Council scale) even in the most severely affected patients (Supplementary Fig. 1). Two of them required an electric wheelchair for mobility, and also had significant disability of the upper limbs. Tendon reflexes were absent in all patients except for the two youngest (Patients fCMT-237/IV:3 and IV:4). All had pes cavus, and the more severely affected patients (CMTNS2 > 20) showed scoliosis as well. Sensory loss was observed in all cases, being more remarkable in older patients. The two most severely patients (Patients fCMT-237/II:3 and fCMT-197/II:4) complained of urinary incontinence; Patient fCMT-237/II:3 had undergone urodynamic evaluation that revealed absent detrusor contractility.

Family fCMT-438’s proband presented with hypotonia and muscle weakness at birth after a normal pregnancy and delivery. She achieved unstable passive sedestation at 6 months, but neither active sedestation nor independent bipedestation were possible at 17 months. On examination, she had microcephaly (cranial perimeter below third percentile), generalized weakness including slight facial involvement and generalized areflexia. Cognitive and language development was normal. Brain MRI showed unspecific mild dismaturative features. She was re-examined at 19 months of age and showed a slight improvement.

Electrophysiological studies (Table 2) showed normal or near normal motor nerve conduction velocities in almost all nerves, while the compound muscle action potentials showed widespread decreased amplitude in a noticeable asymmetrical fashion; upper limb nerves were less severely affected. Sensory nerve action potentials showed low amplitude or were unobtainable. Needle EMG revealed chronic neurogenic changes and prominent spontaneous activity at rest composed of fasciculations and myokymia, activated or increased with muscle contraction. This activity was recorded in both distal and proximal muscles.

Muscular MRI was performed in two patients (Patients fCMT-237/III:4 and fCMT-197/II:4) (Fig. 2). In Patient fCMT-237/III:4, intrinsic muscles of the feet showed a loss of volume and pockets of fat infiltration with relative preservation of interossei and flexor foot muscles. In the legs there was relative preservation of bilateral deep posterior compartment muscles, whereas the remaining muscles in the anterolateral and outer posterior compartments were fully replaced by fat. In the thighs there was a moderate fat infiltration of the quadriceps, and the posterior and medial thigh musculature. Pelvic muscles showed moderate atrophy with little fat infiltration. In Patient fCMT-197/II:4, the muscles in the feet and legs were almost completely replaced by fat, and there was high fat infiltration in the muscles of the thighs and pelvis. In the arms there was also marked fatty substitution in all muscles, and in the shoulder, the deltoid muscle was completely replaced by fat while the periscapular muscles were relatively preserved.

Sural nerve biopsy

The two nerve biopsies analysed revealed similar pathological findings (Fig. 3). Semi-thin sections showed a pronounced depletion of myelinated fibres. Fibre density was 3837/mm² in Patient fCMT-237/II:3, 1650/mm² in Patient fCMT-197/II:4, and 7950/mm² in the control subject. The histogram confirmed a predominant loss of large
<table>
<thead>
<tr>
<th>Family</th>
<th>Patient</th>
<th>Sex</th>
<th>Onset</th>
<th>First evaluation</th>
<th>Last evaluation</th>
<th>Other CMTNS2</th>
<th>Functional status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age</td>
<td>LL weakness</td>
<td>UL weakness</td>
<td>Sensory</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prox/Dist</td>
<td>Prox/Dist</td>
<td>loss</td>
<td></td>
</tr>
<tr>
<td>fCMT-237</td>
<td>I:1</td>
<td>F</td>
<td>38 yo</td>
<td>+/++</td>
<td>---</td>
<td>V</td>
<td>75 yo</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>I:3</td>
<td>M</td>
<td>11 yo</td>
<td>-/+</td>
<td>---</td>
<td>P</td>
<td>47 yo</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>II:3</td>
<td>M</td>
<td>15 yo</td>
<td>++</td>
<td>---</td>
<td>P, V, T</td>
<td>51 yo</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>III:1</td>
<td>M</td>
<td>12 yo</td>
<td>-/+</td>
<td>---</td>
<td>V</td>
<td>20 yo</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>IV:3</td>
<td>M</td>
<td>9 yo</td>
<td>-/+</td>
<td>---</td>
<td>V</td>
<td>17 yo</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>IV:4</td>
<td>F</td>
<td>22 yo</td>
<td>-/+</td>
<td>---</td>
<td>P, V</td>
<td>45 yo</td>
</tr>
<tr>
<td>fCMT-197</td>
<td>II:4</td>
<td>F</td>
<td>17 mo</td>
<td>+/+</td>
<td>---</td>
<td>unknown</td>
<td>19 mo</td>
</tr>
</tbody>
</table>

F = female; M = male; LL = lower limb; UL = upper limb; Prox. = proximal; Dist. = distal; + = mild distal weakness; ++ = moderate distal weakness; +++ = severe distal weakness or proximal involvement; P = pinprick; V = vibratory; T = Touch; NA = not applicable. *Difficult to determine due to poliomyelitis in infancy. **CMTE2 was determined because electrophysiological studies at last examination were not available.
diameter fibres with relative preservation or even an increase in small fibres \((5\mu m)\). Fibre loss was unevenly distributed, giving the appearance of a multifocal profile like that observed in ischaemic neuropathies. Occasional small onion bulbs and variable presence of regenerative clusters were visible. There were no abnormalities in the shape or compaction of myelin sheaths, although a number of myelin sheaths appeared disproportionally thinly myelinated. Active axonal degeneration was rarely observed, and the majority fibres presented a normal axonal compartment without alterations in mitochondria and tubule-filamentous elements. By simple inspection, disregarding unmyelinated axons associated with onion bulbs and regenerative clusters, the unmyelinated fibre populations presented normal shape but seemed to be reduced in number. In the intrafascicular compartment there were areas of fibrosis where the only cellular elements remaining were flattened Schwann cell processes embedded in dense collagen deposits.

Genetic analyses

Capture of our whole-exome sequencing was performed with a uniform coverage; for all four samples from Family fCMT-237, the mean coverage was 84.43, and the standard deviation coverage was 73.77. Filtering data revealed 52 nucleotide changes in heterozygosis shared among all four patients, compatible with a dominant inheritance, and a minor allele frequency of \(5\%\). Out of the 52, seven variants were novel (Supplementary Table 1). Segregation analysis of the seven available DNAs (Fig. 1A) ruled out all of them, except the heterozygous c.568C>T change in the \(MORC2\) gene (NM_014941.1), which is predicted to cause the amino acid substitution p.R190W (NP_055756.1). The screening of c.568C>T in 212 healthy controls of matched geographical ancestry did not show this genetic variant. Next, we performed a mutational screening in 52 undiagnosed CMT2 families. Two additional probands carrying \(MORC2\) mutations were identified. The proband from Family fCMT-197 harbours the same \(MORC2\) c.568C>T change in heterozygosis and Family fCMT-438’s proband is a heterozygous carrier of the novel \(MORC2\) c.74C>T (p.S25L) mutation. Both mutated nucleotides, c.568C>T and c.74C>T, are part of a CpG-sequence. False paternity was excluded for both patients (data not shown), supporting that mutations occur de novo in Families fCMT-197 and fCMT-438 (Fig. 1A).

The computational analyses revealed that the R190 and S25 residues are evolutionarily conserved amino acids. The pathogenicity prediction indicates that both p.R190W and p.S25L are likely damaging, with a SIFT score of 0.0 and a PolyPhen-2 score of 1.0 for each change. Both mutations occur de novo in both families, with a high confidence score of 1.0 in the CADD program.

Table 2 Electrophysiological studies

<table>
<thead>
<tr>
<th>Family</th>
<th>Patient</th>
<th>Age</th>
<th>Motor nerve conductions</th>
<th>Sensory nerve conductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>fCMT-237</td>
<td>II:1</td>
<td>41 yo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>II:3</td>
<td>75 yo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>III:1</td>
<td>47 yo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>III:4</td>
<td>71 yo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fCMT-237</td>
<td>IV:3</td>
<td>20 yo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fCMT-197</td>
<td>II:4</td>
<td>45 yo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fCMT-438</td>
<td>III:3</td>
<td>17 mo</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sup. = superficial; CMAP = compound muscle action potential; SNAP = sensory nerve action potential; CV = conduction velocity; NR = not recordable. *Median and ulnar physiological anastomosis.
Gene expression

Analysis of cDNA from total RNA obtained from several mouse tissues showed that *Morc2* is ubiquitously expressed (Fig. 1B). To better establish whether mouse *Morc2* is expressed in the peripheral nervous system, we performed western blot analysis and immunofluorescence assay using protein extracts and cross-sections of sciatic nerve, respectively. In the western blot, we observed a band with an

Figure 2 Axial T1-weighted MRI scans from Patients fCMT-237/III:4 and fCMT-197/II:4. The scans were obtained for the foot (A), calf (B and F), thigh (C and G), pelvis (D and H) and scapular girdle at the level Th4 (E). MRI findings correspond well with the clinical phenotype. In the patient with a less severe clinical phenotype, fatty replacement is more apparent in muscles of the calf, with preservation seen only in the deep posterior compartment muscles (B). The intrinsic foot muscles, flexors and interossei muscles are relatively preserved (A). Muscles of the thigh (C) and pelvis (D) show mild fatty degeneration and atrophy. In the patient with a more severe clinical phenotype, an almost diffuse involvement can be observed in calf (F), thigh (G) and pelvis muscles (H). Atrophy of periscapular muscles and prominent fatty replacement in the shoulder muscle are present, particularly in the posterior portion of the deltoid (E).
estimated size of 117 kDa, corresponding to MORC2 for all the neural and non-neural tissues (Fig. 1C). In some of the non-neural tissues were detected additional bands. Confocal images of sciatic nerve in cross-section revealed that MORC2 is localized in both axons and Schwann cells (Fig. 1D).

Discussion

We have identified two different mutations in the MORC2 gene in patients from three unrelated families presenting with an axonal motor and sensory neuropathy. This gene has not been previously linked to neuropathies. Although
the clinical series includes only eight cases, the prompt evaluation of early-onset patients and the long lasting follow up of many of these patients allows us to depict the clinical profile, which includes aspects that exceed the classic CMT2 phenotype.

The onset of the symptoms in Family fCMT-237 varied from early childhood to young adulthood and the majority of cases reported cramps and distal lower limb symptoms. However, over the course of years, weakness spread to upper limbs and girdle muscles in an asymmetric fashion without following a homogenous distal to proximal gradient. Progression was not strictly length dependent, as can be confirmed by the MRI of Patient fCMT-237/III:4, where there is a relative preservation of the intrinsic foot muscles, and a complete fatty substitution of all the muscles in the calves except for the tibialis posterior. This morphological pattern contrasts with the classic progression in other CMT phenotypes, such as PMP22 duplication and MFN2- or GDAP1-related neuropathies, where when the muscles of thighs are affected, there is already complete fatty substitution of the muscles of the feet (Gallardo et al., 2006; Chung et al., 2008; Sivera et al., 2010). Sensory nerve involvement developed early in the disease course, and could already be detected in Family fCMT-237’s younger patients. Clinical and/or electrophysiological progression of sensory impairment could be traced in several cases. During the whole disease course, there were prominent positive motor symptoms (cramps, etc.) with an electrical correlate of myokymia and fasciculations in EMG.

Interestingly, the two sporadic patients presented a congenital or infantile onset developing hypotonia, generalized weakness, and delay of the acquisition of motor milestones. The fCMT-438/III:3 patient was reminiscent of spinal muscular atrophy, but with a clear concomitant sensory impairment in nerve conduction studies. The natural history of the patient could not be recorded, as follow-up only reached up to 19 months. In Patient fCMT-197/III:4, once the delayed maturational period ended, a degenerative stage ensued similar to that observed in members of Family fCMT-237. Infantile spinal muscular atrophy-like syndromes have been associated with mutations in the TRPV4 gene but MORC2 patients diverged with respect to concomitant sensory impairment and were absent of arthrogryposis (Echaniz-Laguna et al., 2014).

As with MORC2 neuropathy, there are other forms of hereditary neuropathies that can also present with localized or widespread muscle weakness not respecting the ascending progression characteristic of axonal degeneration in CMT. Vulnerability of specific motor neurons populations has been associated with thenar atrophy in GARS (Antonellis et al., 2003), infantile lower extremities in DYNC1H1 (Harms et al., 2012), vocal cord and scapuloperoneal affection in TRPV4 (Zimon et al., 2010), lower limbs in DNAJB2 (Blumen et al., 2012), calf muscles in FBXO38 (Sumner et al., 2013) and proximal involvement in TFG (Ishii et al., 2012) genes. However, most of the aforementioned pictures correspond to purely motor phenotypes, and in MORC2 there is an early and significant sensory impairment that was substantiated in nerve conduction studies and sural nerve biopsies. In the latter, the findings were consistent with a typical axonal neuropathy with similar features to those observed in typical axonopathies such as MFN2 (Chung et al., 2006) and GDAP1 (Sevilla et al., 2003) neuropathies. The only specific MORC2 pathological feature was the multifocal pattern of myelinated fibre loss, which could explain the different degrees of axonal vulnerability and is consistent with the asymmetric and random-like pattern of muscle weakness.

We have demonstrated that Morc2 is expressed in both axons and Schwann cells of mouse peripheral nerve. Microrchidia family CW-type zinc finger 2 (MORC2) is a member of the MORC protein family (Inoue et al., 1999; Iyer et al., 2008), which is conserved in higher eukaryotes, suggesting that this protein family has relevant biological functions in organisms. Four MORC proteins have been predicted in humans (MORC1 to MORC4), which share four domains, a GHL-ATPase domain at the amino-terminus, a CW-type zinc finger domain, a nuclear localization signal, and coiled-coil domains at the carboxy-terminus. The two identified mutations in our families are placed in the ATPase domain, suggesting that this activity could be altered in the protein.

MORC2 has been postulated to be a transcriptional gene repressor in cancer cells, specifically for gastric cancer (Shao et al., 2010; Wang et al., 2010). Moreover, MORC2 phosphorylation seems to be involved in promoting gastric cell proliferation (Wang et al., 2015), and interacts with ATP-citrate lyase, an enzyme that catalyses the formation of acetyl-CoA. In addition MORC2 plays a role in lipogenesis and adipogenesis (Sánchez-Solana et al., 2014), and is a substrate of PAK1 (p21-activated kinase 1), an integrator of extracellular signals and nuclear processes (Li et al., 2012). After DNA damage, PAK1 phosphorylates MORC2 on serine 739, facilitates an ATPase-dependent chromatin relaxation and promotes the induction of the phosphorylation of the histone H2AX (γ-H2AX). In a genome-wide siRNA screen, 22 genes involved in CMT have increased γ-H2AX levels, an early mark of DNA damage (Paulsen et al., 2009), suggesting a connection between CMT and the DNA damage response. Although it is tempting to speculate that the neuropathy in these MORC2 patients is linked to DNA damage response, other pathomechanistic pathways may certainly be involved.

In conclusion, MORC2 mutations are responsible for an axonal motor and sensory neuropathy with a congenital or infantile onset presenting as a spinal muscular atrophy-like picture, and with a childhood or juvenile onset that starts distally and progresses to involve proximal muscles in an asymmetric and random fashion causing severe disability in adults. Significant positive motor activity such as cramps, fasciculations and myokymia are present from the beginning. A deregulation of the DNA damage response...
pathway may be responsible for axonal degeneration in MORC2 neuropathy, thus adding a new pathogenic mechanism to the long list of causes of CMT.

Acknowledgements

We deeply appreciate the commitment of the families studied. We are grateful to Dr Consuelo Guerri and her team at the CIPF for providing us some antibodies. The authors wish to thank Microscopy Units from UPV and IIS La Fe for their technical support.

Funding

This collaborative joint project is awarded by IRDiRC and funded by the Instituto de Salud Carlos III (ISCIII) - Subdirección General de Evaluación y Fomento de la Investigación within the framework of the National R+D+I Plan (IR11/TREAT-CMT to T.S., S.I.P.P., F.P. and C.E.; PI12/00453 to C.E.; and PI12/0946 to T.S.), co-funded with FEDER funds. Additional support was provided by the Ramón Areces Foundation and by the ICR and the Centro de Investigación Príncipe Felipe (CPII14/00002) to C.E.

Supplementary material

Supplementary material is available at Brain online.

References

